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Abstract 
Action-angle coordinates can be constructed for so-called integrable Hamiltonian dynamical 
systems, for which there exists a foliation of phase space by surfaces that are invariant under 
the dynamical flow.  
 
Perturbations generally destroy integrability.  
 
However, we know that periodic orbits will survive, as will cantori, as will the “KAM” surfaces 
that have sufficiently irrational frequency, depending on the perturbation. There will also be 
irregular “chaotic” trajectories.  
 
By “fitting” the coordinates to the invariant structures that are robust to perturbation, action-
angle coordinates may be generalized to non-integrable dynamical systems. These coordinates 
“capture” the invariant dynamics and neatly partition the chaotic regions. These so-called 
chaotic coordinates are based on a construction of almost-invariant surfaces known as ghost 
surfaces. The theoretical definition and numerical construction of ghost surfaces and chaotic 
coordinates will be described and illustrated. 



Ghost Surfaces: theoretical definition 



Classical Mechanics 101: 

The action integral is a functional of a curve in phase space. 



1954 : Kolmogorov, Dokl. Akad. Nauk SSSR 98, 469 ,1954  

1963 : Arnold, Russ. Math. Surveys 18, 9,1963 

1962 : Moser, Nachr. Akad. Wiss. Goett. II, Math.-Phys. Kl. 1, 1,1962 

“one of the most important concepts is labelling orbits by their frequency” [ J. D. Meiss, Reviews of Modern Physics, 64(3):795 (1992)] 



The structure of phase space is related to the 
structure of rationals and irrationals. 
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THE FAREY TREE; 
or, according to Wikipedia, 

THE STERN–BROCOT TREE. 
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cantori 
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KAM surface 

 

Cantor set 

 

complete barrier 

partial barrier 

 KAM surfaces are closed, toroidal surfaces  

     that stop radial field line transport 

       

 Cantori have “gaps” that fieldlines can pass through; 

     however, cantori can severely restrict radial transport 

 

 Example: all flux surfaces destroyed by chaos, 

     but even after 100 000 transits around torus 

     the fieldlines don’t get past cantori ! 

 

 Regions of chaotic fields can provide some  

     confinement because of the cantori partial barriers. 
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Irrational KAM surfaces break into cantori when 
perturbation exceeds critical value. 
Both KAM surfaces and cantori restrict transport. 



Simple physical picture of cantori 
[Percival, 1979] 

[Schellnhuber, Urbschat & Block, Physical Review A, 33(4):2856 (1986) ] 



The construction of extremizing curves of the action 
generalized extremizing surfaces of the quadratic-flux 



ρ  

poloidal angle,  

0. Usually, there are only the “stable” periodic fieldline and the unstable periodic fieldline, 

At each poloidal angle, compute radial “error” field 
that must be subtracted from B to create a periodic curve, 

and so create a rational, pseudo flux surface. 

pseudo fieldlines 

true fieldlines 



Ghost surfaces, another class of almost-invariant 
surface, are defined by an action-gradient flow 
between the action minimax and minimizing fieldline. 



Ghost surfaces are (almost) indistinguishable from 
QFM surfaces 
can redefine poloidal angle to unify ghost surfaces with QFMs. 



Chaotic Coordinates: intuitive description 



irrational surface 

rational surface 

Action-angle coordinates can be constructed for “integrable” fields 
 
1. the “action” coordinate coincides with the invariant surfaces 
2. dynamics then appears simple 

irrational surface 

rational surface 

angle coordinate 

Simplied Diagram showing the invariant structures: 
integrable 



KAM  surface 

O 

cantorus 

island chain 

X O X periodic orbits  

After perturbation: 
    the   rational surfaces break into islands, “stable” and “unstable” periodic orbits survive, 

some irrational surfaces break into cantori,  
some irrational surfaces survive (KAM surfaces), break into cantori as perturbation increases,  

 
 action-angle coordinates can no longer be constructed globally                                   

Simplied Diagram showing the invariant structures Simplied Diagram showing the invariant structures: 
perturbed 



Simplified Diagram of the structure of non-integrable fields, 

→showing rational, “almost-invariant” surfaces   
Simplied Diagram showing the invariant structures: 
perturbed 



Simplified Diagram of the structure of non-integrable fields, 

→showing coordinate surfaces that pass through islands   

“Chaotic-coordinates” coincide with the invariant sets 
 

1. coordinate surfaces are adapted to fractal hierarchy of remaining invariant sets 
2. ghost surfaces  quadratic-flux minimizing surfaces are “almost-invariant” 
3. dynamics appears “almost-simple”  

Simplied Diagram showing the invariant structures: 
perturbed, but with coordinates adapted to invariant sets 



Poincaré plot of chaotic field 
(in action-angle coordinates of unperturbed field) 

Poincaré plot of chaotic field 
in chaotic coordinates 

     phase-space is partitioned into (1)   regular “irrational” regions 
                                                     and (2) irregular  “rational” regions  
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new angle coordinate   → old angle coordinate   → 

Simplied Diagram showing the invariant structures: 
example 



Chaotic Coordinates: construction for stellarator fields 
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R 

Large Helical Device (LHD) is a stellarator in Japan 
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The corresponding islands lie on a coordinate surface 



The Flux Farey tree shows the flux across the rational 
surfaces, the importance of the hierarchy of partial 
barriers can be quantified 
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Now, construct more ghost surfaces 

(resolve the fractal structure iteratively) 



Poincaré 

plot. 
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Each ordered pair of rationals 

defines a noble irrational 

Poincaré 

plot. 

 

 

 

 
Coordinates 

constructed 

by interpolation 

between 

QFM surfaces; 

 

flux surfaces 

are straight. 

 

 

KAM  
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Islands become 

square. 



Poincaré 

plot. 

 

 

 

 

 

 

 

 

 

 

 

 



cantori 

Poincaré 
plot. 

 
 
 

Edge of  
confinement 
region is  
not a single,  
sharp barrier; 
 
but instead 
a hierarchy of 
 
i. islands, 
ii. KAM, and 
iii. cantori. 

 

boundary  



Anisotropic Heat Transport 



particle “knocked” 

onto nearby field line 

Consider heat transport: 
rapid transport along the magnetic field, 
slow transport across the magnetic field. 



Poincaré plot                         Error vs grid resolution 

solid lines = isotherms 

grey dots = Poincaré  plot 

solid lines = isotherms 

grey dots = Poincaré  plot 

4-th order differencing gives 

4-th order convergence  

Numerical solution of anisotropic heat transport 
exploits field-aligned coordinates 



hot 

cold 

isotherm ghost-surface ghost-surface 

Isotherms of the steady state solution to the 
anisotropic diffusion coincide with ghost surfaces; 
analytic, 1-D solution is possible.  



Chaotic coordinates simplify temperature profile to a 
smoothed Diophantine (fractal) staircase  



Comments 



Unstable manifold 



The magnetic axis is a “stable” fixed point (usually), 
and the X-point is “unstable”. 
Consider the eigenvalues of tangent mapping:  



The    stable/unstable direction forwards     in φ is the 
      unstable/stable      direction backwards in φ. 

separatrix 



For perturbed magnetic fields, the separatrix splits. 
A “partial” separatrix can be constructed. 

ASDEX-U 



Anisotropic heat transport + unstable manifold =  ? 
What is the temperature in the “chaotic edge” ? 



Anisotropic heat transport + unstable manifold =  ? 
What is the temperature in the “chaotic edge” ? 


